23. Diastereoselective Synthesis of Cyclopropanes from Carbon Pronucleophiles and Terminal Alkenes
Kim, M.J.; Wang, D.J.; Targos, K.; Garcia, U.A.; Harris, A.F.; Guzei, I.A.; Wickens, Z.K.*
Angew. Chem. Int. Ed. 2023, e202303032

22. Practical and General Alcohol Deoxygenation Protocol
Williams, O.P.; Chmiel, A.F.; Mikhael, M.; Bates, D.F.; S. Yeung, C.S.; Wickens, Z.K.*
Angew. Chem. Int. Ed. 2023, e202300178

21. Translating planar heterocycles into 3D analogs via photoinduced hydrocarboxylation
Mikhael, M.; Alektiar, S.N.; Yeung, C.; Wickens, Z.K.*
ChemRxiv Preprint 2022.

20. An alkene, a photon, and a catalyst walk into a bar; Zaitsev wasn’t invited
Alektiar, S.N.; Williams, O.P.; Wickens, Z.K.*
Trends in Chemistry 2022, 4 (6), 467–470.


19. Electrochemical Synthesis of Allylic Amines from Alkenes and Amines
Wang, D. J.; Targos, K.; Wickens, Z.K.*
J. Am. Chem. Soc. 2021, 143, 21503–21510
Org. Chem. Highlight Org. Chem. Highlights 2022, May 23
Trends in Chem Highlight Trends Chem. 2022, In press, correct proof

18. Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Alkenes
Alektiar, S. N.; Wickens, Z. K.*
J. Am. Chem. Soc. 2021, 143, 33, 13022–13028.
Synfacts highlight Synfacts 2021; 17(11): 1261 
JACS Spotlight J. Am. Chem. Soc. 2021, 143, 37, 14937–14938
ORPD Items of Interest highlight Org. Process Res. Dev. 2021, 25, 10, 2155–2166

17. Aziridine synthesis by coupling amines and alkenes via an electrogenerated dication
Holst, D. E.; Wang, D. J.; Kim, M.; Guzei, I. A.; Wickens, Z. K.*
Nature 2021, 596, 74–79.
Highlighted by T. Piou and LC. Campeau Nat. Chem. 13, 1027–1028 (2021) 
Synthesis Workshop Highlight
Synfacts highlight Synfacts 2022; 18(02): 0125 

16. Non-Innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides
Chmiel, A. F.; Williams, O. P.; Chernowsky, C. P.; Yeung, C.; Wickens, Z. K.*
J. Am. Chem. Soc. 2021, 143, 10882–10889
Synthesis Workshop highlight

15. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces New Potent Photoreductant Activity
Chernowsky, C. P.; Chmiel, A. F.; Wickens, Z. K.*
Angew. Chem. Int. Ed. 2021, 60 (39), 21418–21425.

14. Unveiling Potent Photooxidation Behavior of Catalytic Photoreductants
Targos, K. T.; Williams, O. P.; Wickens, Z. K.*
J. Am. Chem. Soc. 2021 143, 11, 4125–4132


13. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling
Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K.*
J. Am. Chem. Soc. 2020 142, 2093–2099
JACS Early Career Investigators Virtual Collection Highlight
Organic Chemistry Portal Highlight

Prior to Wisconsin 

12. A Case Study in Catalyst Generality: Simultaneous, Highly-Enantioselective Brønsted- and Lewis-Acid Mechanisms in Hydrogen-Bond-Donor Catalyzed Oxetane Openings.
Strassfeld, D. A.; Algera, R. F.; Wickens, Z. K.; Jacobsen, E. N.
J. Am. Chem. Soc. 2021, 143, 9585–9594

11. Highly Enantioselective, Hydrogen-Bond-Donor Catalyzed Additions to Oxetanes
Strassfeld, D. A.; Wickens, Z. K.; Picazo, E.; Jacobsen, E. N.
J. Am. Chem. Soc. 
 2020, 142, 9175-9180.

10. Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation
Chu, C.K.; Ziegler, D.T.; Carr, B.; Wickens, Z.K.; Grubbs R.H.*
Angew. Chem. Int. Ed. 2016, 55, 8435 – 8439

9. Tandem Z-selective Cross Metathesis-Dihydroxylation for the Synthesis of anti-1,2-Diols
Dornan, P.; Wickens, Z. K.; Grubbs, R. H.*
Angew. Chem. Int. Ed. 2015, 54, 7134 – 7138.

8. Aerobic Palladium-Catalyzed Diacetoxylation of Alkenes Enabled by Catalytic Nitrite
Wickens, Z. K.; Guzman, P.; Grubbs, R. H.*
Angew. Chem. Int. Ed. 2015, 54, 236 – 240

7. Rapid Access to alpha-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes
Lerch, M.; Morandi, B.; Wickens, Z. K.; Grubbs, R. H.*
Angew. Chem. Int. Ed. 2014, 53, 8654 – 8658.

6. Catalyst-Controlled Wacker-Type Oxidation: Facile Access to Functionalized Aldehydes
Wickens, Z. K.; Skakuj, K.§; Morandi, B.; Grubbs, R. H.*
J. Am. Chem. Soc. 2014, 136, 890–893.

5. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst
Wickens, Z. K.; Morandi, B.; Grubbs, R. H.*
Angew. Chem. Int. Ed. 2013, 52, 11257 – 11260.

4. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis
Morandi, B; Wickens, Z. K.; Grubbs, R. H.*
Angew. Chem. Int. Ed. 2013, 52, 9751–9754.

3. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins
Morandi, B.; Wickens, Z. K.; Grubbs, R. H.*
Angew. Chem. Int. Ed. 2013, 52, 11257 – 11260.

2.Efficient and Highly Aldehyde Selective Wacker Oxidation
Teo, P.; Wickens, Z. K.; Dong, G.; Grubbs, R. H.*
Org. Lett. 2012, 14, 3237.

1. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis
Dong, G.; Teo, P.†; Wickens, Z. K.†; Grubbs, R. H.*
Science, 2011, 333, 1609.